Darstellung und Kristallstruktur von Ag₃O₄

B. STANDKE UND M. JANSEN

Institut für Anorganische Chemie der Universität Hannover Callinstrasse 9, 3000 Hannover, Bundesrepublik Deutschland

Received March 11, 1986

The novel silver oxide Ag₃O₄ has been obtained by anodic oxidation of aqueous solutions of AgF and AgClO₄ ($C_{Ag^+} = 0.2 \text{ mole/liter}, U = 0.8 \text{ V}, I = 100 \text{ Am}^{-2}, T = -2^{\circ}\text{C}$) as a crystalline solid. According to simultaneous TGA/DTA, Ag₃O₄ decomposes at 63°C ($\Delta T \rightarrow 0^{\circ}\text{C/sec}$) into AgO and O₂ by a strong exothermic reaction. The crystal structure has been determined using diffractometer data ($P2_1/c$; $a = 357.87(3), b = 920.79(5), c = 567.71(3) \text{ pm}, \beta = 106.135(5)^{\circ}$; 372 unique reflections; $R = 0.041, R_w = 0.034$). Square planar coordination of all silver atoms by oxygen characterizes the silver(II, III)-oxide compound. The AgO₄ squares are connected via common vertices and edges forming a 3*d* network. Above 70 K, Ag₃O₄ behaves paramagnetically. © 1987 Academic Press, Inc.

1. Einleitung

Binäre Oxide mit höherwertigem Silber sind in großer Zahl beschrieben worden (1). In den meisten Fällen ist freilich die Existenz und genaue Zusammensetzung nicht sichergestellt. Ausnahmen stellen die beiden Formen von AgO dar, für die Strukturvorschläge mit Neutronenpulverdaten verfeinert wurden (2, 3). Danach handelt es sich um gemischtvalente Ag(I, III)-Oxide.

Bei der anodischen Oxidation wässriger Silbersalzlösungen entstehen gewöhnlich clathratartige Verbindungen vom Typ Ag₇O₈X (X = NO₃⁻, HF₂⁻, HSO₄⁻, BF₄⁻ (4)). Werden jedoch Anionen eingesetzt, die wie zum Beispiel PF₆⁻ nicht in die Hohlräume der Ag₇O₈-Matrix passen, so entsteht mit Ag₂O₃ ein neues binäres Silberoxid (5, 6). Systematische Untersuchungen zur anodischen Oxidation von wasserlöslichen Silbersalzen unter Variation von Tempera-0022-4596/87 \$3.00

Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. tur, Stromdichte und Konzentration der Elektrolytlösungen führten zu der Entdeckung von Ag_3O_4 , eines weiteren gemischtvalenten Silberoxides (7).

2. Experimentelles

Darstellung. Ag₃O₄ entsteht als Reinsubstanz im Gramm-Maßstab bei der Elektrolyse wässriger Silberfluorid-Lösungen als kristallines Anodenprodukt. Die Silberionen-Konzentration muß während der anodischen Oxidation im Bereich zwischen 0,1 bis 0,35 mole/liter liegen. Andernfalls wird entweder keine Abscheidung an der Anode beobachtet (geringere Konzentration) oder es entsteht neben Ag₃O₄ die Clathratphase Ag₇O₈HF₂ (höhere Konzentration). Die zwischen Kathode und Anode angelegte Spannung kann zwischen 0,75 und 1.5 V variieren. Höhere Spannungen verursachen erhöhte Sauerstoffeine entwicklung und verhindern damit das

ABB. 1. Anodenprodukte in Abhängigkeit der Silberionenkonzentration (C_{Ag^+}) und der Art des Gegenanions bei einer anodischen Stromdichte von 100 A m⁻².

Wachstum der Kristalle an der Anode, bei niedrigeren Spannungen wird keine Produktabscheidung mehr beobachtet. Als Anodenmaterial hat sich poliertes Platinmetall bewährt (hohe Überspannung für die anodische Sauerstoffentwicklung), das zur Erhöhung der anodischen Feldliniendichte als dünner Draht ($\phi = 0.3$ mm) ausgebildet wird. Da Ag_3O_4 wie Ag_2O_3 (5, 6) wenig oberhalb bzw. bei Raumtemperatur Sauerstoff unter Bildung von AgO abspaltet, wird die Elektrolyse bei möglichst tiefer Temperatur durchgeführt. Durch den Zusatz von NaF läßt sich der Gefrierpunkt des Elektrolyten auf unter 0°C absenken, wodurch zugleich die Leitfähigkeit der Lösung vergrößert wird. Wegen der Empfindlich-Produktes keit des gegen starke Mineralsäuren (Auflösung unter Sauerstoffentwicklung) wird die Elektrolyse nach ca. 2 h unterbrochen (pH-Erniedrigung während der Elektrolyse), sofern kein kontinuierlicher Austausch der Elektrolytlösung oder eine Regelung des pH-Wertes auf anderem Wege erfolgt. Neben Silber(I)-

fluorid haben wir weitere in Wasser lösliche Silber(I)-salze in verschiedenen Konzentrationen und bei unterschiedlichen Spannungen der anodischen Oxidation unterworfen. Dabei stellt sich heraus, daß für die Art des Reaktionsproduktes die angelegte Spannung unerheblich ist, sofern 1,0 V (Ag_2O_3) bzw. 0.75 V $(Ag_3O_4 \text{ und } Ag_7O_8X)$ überschritten werden; bei Elektrolysespannungen über 1,5 V erwies sich die starke Sauerstoffentwicklung als nachteilig. In der Abbildung 1 sind die in Abhängigkeit von der Konzentration der Silber(I)-salzlösungen und der Art des Gegenanions erhaltenen Produkte zusammengestellt. Danach entstehen aus AgNO₃- und Ag₂SO₄-Lösungen stets die entsprechenden Clathratphasen, aus AgF, AgBF₄, AgClO₄ und AgPF₆ bei niedrigen Silberionenkonzentrationen die neuen binären Oxide Ag₂O₃ bzw. Ag₃O₄, bei hohen Ag⁺-Konzentrationen bilden sich, außer im Falle von AgPF₆, dessen Anion offensichtlich für die Lücke im $Ag_7O_8^+$ -Gerüst zu groß ist, die kubischen Phasen Ag_7O_8X . Daß jeweils in

einem Zwischenbereich Produktgemenge erhalten werden, führen wir darauf zurück, daß bei der diskontinuierlichen Ausführung der Elektrolyse zwei wichtige Parameter, die Silberionenkonzentration und der pH-Wert, nicht konstant gehalten werden.

Für die Darstellung von Ag₃O₄ haben sich 0,2 molare Silberfluoridlösungen, deren Fluoridionen-Konzentration durch Zusatz von NaF auf 2 moles/liter erhöht worden war, als am geeignetsten erwiesen. Die verwendete Anode bestand aus einem Platin-Draht ($\phi = 0,3 \text{ mm}, l = 120 \text{ mm}$), als Kathode diente eine Platin-Schale ($\phi = 55 \text{ mm}$). Die weiteren optimierten Parameter sind: $U = 0,8 \text{ V}, I = 12 \text{ mA}, T = -2^{\circ}\text{C}$ und Elektrolysezeit = 2 h.

Die im Verlaufe der anodischen Oxidation entstandenen Kristalle werden mit destilliertem Wasser (T = 0°C), anschließend mit Methanol (T = 0°C), gespült und kurz im Vakuum getrocknet.

Eigenschaften. Auf diese Weise hergestelltes Ag_3O_4 ist schwarz, metallisch glänzend. Die Einkristalle zeigen tafelförmigen Habitus. Der Abbau zu AgO tritt in stark exothermer Reaktion bei 63°C ein (simultane DTA/TGA, Netzsch STA 429, Extrapolation auf eine Aufheizgeschwindigkeit von 0°C/sec). Die Einwirkung starker Mineralsäuren oder Laugen bewirkten die Zersetzung von Ag₃O₄ unter Sauerstoffentwicklung. Eine dunkelbraune, wenig beständige Lösung entsteht bei der Behandlung von Ag₃O₄ mit konzentrierter HNO₃ unter Kühlung.

Röntgenographische Untersuchungen. Drehkristallaufnahmen nach den kristallographischen Hauptachsen sind in Einklang mit einer über die Orientierungsprozedur auf einem automatischen Vierkreisdiffraktometer ermittelten Gitterkonstanten. Ag $_3O_4$ kristallisiert danach in einem monoklinen Kristallsystem. Die Gitterkonstanten wurden aus Guinierdaten (53 eindeutig indizierbare Reflexe, Tabelle I)

TABEL	LE I	
PULVERDATEN	VON	Ag ₃ O ₄ ^a

h k l	$d_{\rm obs}$	$I_{\rm obs}$	h k l	dobs	Iobs
011	4,6886	20	150	1,62321	150
020	4,6008	100	151	1,61406	40
021	3,5180	100	132	1,61261	20
100	3,4366	50	220	1,61003	50
110	3,2185	600	2 2 <u>2</u>	1,57839	50
111	3,1557	250	133	1,57239	200
120	2,7543	100	033	1,56378	200
002	2,7275	400	060	1,53498	100
121	2,7154	400	052	1,52595	50
031	2,6755	1000	151	1 5020	150
012	2,6145	50	211	1,5050	150
111	2 5030	600	152	1,48301	100
102	2,5059	000	142	1,46329	150
$1 1 \overline{2}$	2,4153	300	$21\overline{3}$	1,45104	100
022	2,3469	50	221	1,44561	50
040	2,3041	50	113	1,43156	100
130	2,2900	100	$10\frac{4}{4}$	1,40889	100
131	2 2645	500	161	1,39625	100
121	2,2045	500	240	1,37730	200
$1 2 \overline{2}$	2,1979	200	004	1,36349	50
041	2,1201	50	242	1,35702	150
032	2,0385	20	062	1,33744	100
132	1,9390	50	161	1 32189	50
140	1,9128	100	152	1,52107	50
141	1,8990	50	024	1 30814	50
112	1,8563	50	162	1,50014	50
$21\overline{1}$	1,7553	200	153	1,29820	20
122	1,7526	100	053	1,29359	20
051	1,7448	100	212	1,28740	50
14 <u>1</u>	1,72364	10	224	1,20678	20
$12\overline{3}$	1,70151	100			
023	1,69062	100			
$20\overline{2}$	1,67973	40			

^a Guiniertechnik, Cu $K\alpha_1$, T-Quarz als Standard, $\theta_{max} = 40^{\circ}$.

durch Ausgleichsrechnung ermittelt. Die systematischen Auslöschungen verweisen auf die Raumgruppe $P2_1/c$. Die Datensammlung erfolgte mit dem rechnergesteuerten Diffraktometer Siemens-Stoe AED 2 bei -40°C. Bei dieser Temperatur blieb der Kristall nach Ausweis der Intensitäten dreier Referenzreflexe über die Meßzeit (Streuung $\pm 5\%$) unverändert. Die Rechnungen zur Strukturanalyse erfolgten auf

TABELLE II Kristallographische Daten von Ag₃O₄

Raumgruppe	P2 ₁ /c
Gitterkonstanten (25°C), 53	a = 357,87(3) pm
Guinierreflexe; Standardab-	b = 920,79(5) pm
weichungen in Klammern	c = 567,71(3) pm
-	$\beta = 106.135(5)^{\circ}$
Volumen der Elementarzelle	$179.70 \times 10^{6} \text{ pm}^{3}$
Zahl der Formeleinheiten pro	2
Elementarzelle	
D .	7 163 g/cm ³
$\mu(\mathbf{M}_{0}\mathbf{K}_{\alpha})$	147.77 cm^{-1}
Diffraktometer	Siemens-Stoe AED-2 mit Tieftem- peraturzusatz (Stoe)
Strahlung, Monochromator	$MoK\alpha$ ($\lambda = 71,073$ pm), Graphit
Korrekturen	Polarisations- u. Lorentzfaktor numerische Absorptionskorrektur
minimaler und maximaler Transmissions-koeffizient	0,2775; 0,7141
Meßbereich	$12 \leq 2\theta \leq 60$
Abtastbreite maximale Meßzeit pro Reflex	$\omega/2\theta - \mathrm{scan}; 2,4^\circ + \frac{\lambda_{\alpha 2} - \lambda_{\alpha 1}}{\lambda_{\mathrm{Mo}K\alpha}} \tan \theta$ 3 min
gemessene Reflexe	780
symmetrieunabhängige Reflexe	391 (372 mit $F > 3\sigma_{(F)}$)
Strukturlösung	direkte Methoden, "full matrix" least squares, anisotrope Temperaturfaktoren
variable Parameter	35
F(0.0,0)	346
R	0.0414
R _w	0,034; $\omega = 1/\sigma_{(F)}^2$

einer Eclipse S 140 mit dem Programmpaket STRUCSY (8). Nähere Angaben zur Datensammlung und Strukturbestimmung enthält Tabelle II. Die endgültigen Ortsyund Temperaturparameter sind in der Tabelle III zusammengestellt.¹

3. Beschreibung der Kristallstruktur und Diskussion

 Ag_3O_4 enthält Silber ausschließlich planar-quadratisch von Sauerstoff umgeben (Tabelle IV). Diese für zwei- und dreiwertiges Silber charakteristische Koordination ist kürzlich in einem Falle ($Ag_{1,8}Mn_8O_{16}$)

auch für einwertiges Silber beobachtet worden (9). Der Abstand Ag⁺-O ist mit 240 pm jedoch drastisch größer als die in Ag₃O₄ gefundenen Silber-Sauerstoff-Abstände (Mittelwert: 206 pm), so daß eine Formulierung als Silber(I, III)-oxid, etwa in Analogie zu AgO, ausscheidet. Die Elementarzelle enthält zwei Formeleinheiten $Ag_3O_4 = AgO \cdot$ Ag₂O₃. Bei der Besetzung der Punktlage 2a in $P2_1/c$ mit Ag1 und 4e mit Ag2 (Tabelle III) böte es sich an, Agl die Oxidationsstufe 2⁺ und Ag2 die Oxidationsstufe 3⁺ zuzuordnen. Dies wäre jedoch nicht im Einklang mit den Ag-O-Bindungsabständen, die für Ag1 (Mittelwert: 203 pm) kürzer als für Ag2 (Mittelwert: 207 pm) gefunden werden. Nach der Strukturgeometrie bleibt nur die Annahme eines weitgehenden Ladungsausgleichs über die Silberpositionen mit einer etwas höheren effektiven Ladung auf Ag1. Damit verträglich wären die für beide Silberlagen gegenüber Ag₂O₃ vergrößerten Ag-O-Abstände.

Für das Koordinationspolyeder um Ag1 (Abbildung 2) ist in guter Näherung die Punktsymmetrie 4/mmm erfüllt, wegen der Lagesymmetrie 1 liegen alle fünf Atome (AgO_4) in einer Ebene. Die Abweichungen innerhalb des Polyeders um Ag2 von der Idealgeometrie sind demgegenüber sowohl hinsichtlich der Bindungsabstände als auch der Winkel beträchtlich. Dies dürfte in der Hauptsache auf die Verknüpfung zweier "Quadrate" über eine gemeinsame Kante zu einer Baugruppe Ag₂O₆ (Punktsymmetrie 1, Abbildung 2) zurückzuführen sein. In unmittelbarem Zusammenhang damit sind die deutlichen Abweichungen der Bindungswinkel an Silber zwischen den beiden "terminalen" O und über der gemeinsamen Kante zu sehen. Ag2 liegt um 13 pm außerhalb der "besten" Ebene durch die vier benachbarten Sauerstoffatome. Die Koordinationspolyeder um Ag1 und Ag2 werden durch jeweils zwei Sauerstoffatome zu stark elongierten Oktaedern ergänzt. Die

¹ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldschafen 2, unter Angabe der Hinterlegungsnummer[†] CSD 51152, der Autoren und des Zeitschriftenzitats angefordert werden.

TTDDDDD III	TA	BE	LLE	ш
-------------	----	----	-----	---

Atomkoordinaten und Koeffizienten der anisotropen Temperaturfaktoren [×104] von Ag $_3O_4{}^a$									
Atom	X	Ŷ	Z	U_{11}	U ₂₂	U ₃₃	U_{12}	U ₁₃	U ₂₃
Agl	0	0	0	91(6)	78(5)	54(4)	4(3)	22(3)	-4(3)
Ag2	0,7151(2)	0,3580(1)	0,9519(1)	99(5)	82(4)	59(3)	15(2)	27(2)	4(2)
01	0,5121(19)	0,4501(8)	0,2264(10)	152(31)	107(34)	67(25)	45(25)	18(19)	39(22)
02	0,9634(17)	0,1881(9)	0,1756(11)	143(33)	148(37)	45(21)	12(25)	50(19)	19(20)

^a Temperaturfaktoren in der Form: $\exp[-2\pi^2(U_{11}a^{*2}h^2 + \cdots + 2U_{23}b^*c^*kl + \cdots)]$ Å²; Standardabweichungen in Klammern.

Ag-O-Abstände betragen 275 pm (Ag1) bzw. 297 und 275 pm (Ag2).

Durch die Verknüpfung der beiden in Abbildung 2 wiedergegebenen Baueinheiten im Verhältnis 1:1 jeweils über gemeinsame Ecken ergibt sich die dreidimensional vernetzte Struktur des Ag_3O_4 . Das Verknüpfungsprinzip ist am Beispiel der Ag_2O_6 -Gruppierung mit den unmittelbar benachbarten Polyedern schematisch in Abbildung 3 wiedergegeben. Sauerstoff verbindet dabei stets drei Silberatome. Die Verknüpfung erfolgt damit bei Vorgabe der Koordinationszahl von Silber und der Zusammensetzung entsprechend der Formulierung $AgO_{4/3}$ nach der einfachsten Realisierungsmöglichkeit. Eine stereographische Darstellung der Kristallstruktur zeigt die Abbildung 4.

Die Kristallstrukturen von Ag₃O₄ und Ag₂O₃ weisen trotz der unterschiedlichen dreidimensionalen Vernetzung der konstituierenden Polveder eine interessante Parallele auf: In beiden Strukturen beobachtet man einen Aufbau aus alternierend aufeinanderfolgenden Schichten von Silber und Sauerstoff. Abbildung 5 verdeutlicht diesen Sachverhalt: be-

ABB. 2. Perspektivische Darstellung der Koordinationspolyeder um Ag1 (a) und Ag2 (b) mit den jeweils übernächsten Nachbarn. Kleinere Kugeln repräsentieren Ag, Abstände in [pm] und Winkel [°].

TABELLE IV

Bindungsabstände (pm) und Bindungswinkel (°) in $Ag_3O_4{}^a$					
Ag1-01	(2 <i>x</i>)	204,3(6)		
Ag1-02	(2x))	202,2(8)		
Ag201			207,7(7)		
Ag2-O1a			208,7(7)		
Ag2O2			205,7(7)		
Ag2-O2a			205,3(7)		
kürzeste	Ag-Ag	g–Abst	ände		
Ag2 – Ag2a			316,0(2)		
Agl – Ag2			327,1(2)		
01 -Ag1-C	2	(2x)	88,6(4)		
O2 -Ag1-C)la	(2x)	91,4(4)		
O2 -Ag2-C)1		89,8(4)		
O1 -Ag2-C)1a		81,3(4)		
Ola -Ag2-C)2a		91,6(4)		
O21 -Ag2-C	02		96,4(4)		
Aglc-Ol -A	g2a		108,4(2)		
Aglc-Ol -A	.g2		105,1(2)		
Ag2 01 A	.g2a		98,7(2)		
Ag2 -O2 -A	.g2b		115,2(2)		
Ag2 -O2 -A	gia		107,6(2)		
Ag1 -O2 -A	.g2		115,0(2)		

^{*a*} Standardabweichungen in Klammern

merkenswerterweise sind weder die Sauerstoffschichten noch die Silberschichten zweidimensional dicht gepackt.

ABB. 3. Schematische Darstellung des Verknüpfungsprinzips am Beispiel der Ag₂O₆-Einheit mit den unmittelbar benachbarten Polyedern.

4. Zusammenfassung

Durch anodische Oxidation von wässrigen Silber(I)-fluoridlösungen ist es gelungen, ein neues binäres Silberoxid, Ag₃O₄, in kristalliner Form zu synthetisieren. Nach der Strukturanalyse ist Ag₃O₄ das erste Silberoxid, das zweiwertiges Silber enthält. Nach Messungen der magnetischen Suszeptibilität ist Ag₃O₄ oberhalb 70 K paramagnetisch. Eine Auswertung nach Curie-Weiß ergibt ein magnetisches Moment von 2,08 B.M. pro Ag²⁺-Teilchen (10).

ABB. 4. Stereographische Darstellung der Kristallstruktur von Ag₃O₄.

ABB. 5. Silber- (große Kreise) und Sauerstoffschichten (kleine Kreise) in Ag_3O_4 ; Stapelabfolge in [001]; Projektion auf (100).

Annerkennung

Wir danken dem Fonds der Chemie für die Unterstützung auch dieser Arbeit.

Literaturzitate

- Literaturübersicht über binäre Silberoxide mit der Zusammensetzung Ag₂O_{>1}: "Gmelins Handbuch der anorganischen Chemie," Silber B1, S. 102, Verlag Chemie, Weinheim (1971).
- V. SCATTURIN, P. BELLON, UND A. J. SALKIND, Ric. Sci. 30, 1034 (1960);' J. Electrochem. Soc. 108, 819 (1961).
- 3. K. YVON, A. BEZINGE, P. TISSOT, UND P. FIS-CHER, J. Solid State Chem. 65, 225 (1986).

- I. NARAY-SZABO UND K. POPP, Z. Anorg. Allg. Chem. 322, 286 (1963); C. H. WONG, T. H. LU, C. N. CHEN, UND T. I. LEE, J. Inorg. Nucl. Chem. 34, 3257 (1972).
- B. STANDKE UND M. JANSEN, Angew. Chem. 97, 114 (1985); Int. Ed. 24, 118 (1985).
- 6. B. STANDKE UND M. JANSEN, Z. Anorg. Allg. Chem. 535, 39 (1986).
- B. STANDKE UND M. JANSEN, Angew. Chem. 98, 78 (1986); Int. Ed. 25, 77 (1986).
- 8. STRUCSY: Structure Determination Programsystem, September 1984, Fa. Stoe, Darmstadt.
- 9. F. M. CHANG UND M. JANSEN, Angew. Chem. Int. Ed. 23, 906 (1984).
- U. KRAFCZYK, P. GÜTLICH, B. STANDKE, UND M. JANSEN, unveröffentlicht.